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1 Introduction

In conventional programming languages, there is a clear distinction between types and values. For
example, in Haskell [9], the following are types, representing integers, characters, lists of characters, and
lists of any value respectively:

e Int,Char, [Char], [a]
Correspondingly, the following values are examples of inhabitants of those types:
e 42, "a’","Hello world!", [2,3,4,5,6]

In a language with dependent types, however, the distinction is less clear. Dependent types allow types to
“depend” on values — in other words, types are a first class language construct and can be manipulated
like any other value. The standard example is the type of lists of a given length!, Vect n a, where a is
the element type and n is the length of the list and can be an arbitrary term.

When types can contain values, and where those values describe properties (e.g. the length of a list)
the type of a function can begin to describe its own properties. For example, concatenating two lists
has the property that the resulting list’s length is the sum of the lengths of the two input lists. We can
therefore give the following type to the app function, which concatenates vectors:

app : Vect n a —> Vect m a —> Vect (n + m) a

This tutorial introduces IDRIS, a general purpose functional programming language with dependent
types. The goal of the IDRIS project is to build a dependently typed language suitable for verifiable
systems programming. To this end, IDRIS is a compiled language which aims to generate efficient
executable code. It also has a lightweight foreign function interface which allows easy interaction with
external C libraries.

1.1 Intended Audience

This tutorial is intended as a brief introduction to the language, and is aimed at readers already familiar
with a functional language such as Haskell? or OCaml®. In particular, a certain amount of familiarity
with Haskell syntax is assumed, although most concepts will at least be explained briefly. The reader is
also assumed to have some interest in using dependent types for writing and verifying systems software.

1.2 Example Code

This tutorial includes some example code, which has been tested with IDRIS version 0.9.16. The files are
available in the IDRIS distribution, and provided along side the tutorial source, so that you can try them
out easily, under tutorial/examples. However, it is strongly recommended that you can type them
in yourself, rather than simply loading and reading them.

2 Getting Started

2.1 Prerequisites

Before installing IDRIS, you will need to make sure you have all of the necessary libraries and tools. You
will need:

* A fairly recent Haskell platform. Version 2013.2.0.0 should be sufficiently recent, though it is better
to be completely up to date.

* The GNU Multiple Precision Arithmetic Library (GMP) is available from MacPorts and all major
Linux distributions.

!Typically, and perhaps confusingly, referred to in the dependently typed programming literature as “vectors”
2http://www.haskell.org
Shttp://ocaml.org
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2.2 Downloading and Installing

The easiest way to install IDRIS, if you have all of the prerequisites, is to type:
cabal update; cabal install idris

This will install the latest version released on Hackage, along with any dependencies. If, however, you
would like the most up to date development version you can find it, as well as build intructions, on
GitHub at: https://github.com/edwinb/Idris-dev.

To check that installation has succeeded, and to write your first IDRIS program, create a file called
“hello.idr” containing the following text:

module Main
main : IO ()
main = putStrLn "Hello world"

If you are familiar with Haskell, it should be fairly clear what the program is doing and how it works,
but if not, we will explain the details later. You can compile the program to an executable by entering
idris hello.idr -o hello atthe shell prompt. This will create an executable called hello, which
you can run:

$ idris hello.idr -o hello
S ./hello
Hello world

Note that the $ indicates the shell prompt! Should the IDRIS executable not be found please ensure that
you have added ~/ . cabal/bin to your $PATH environment variable. Mac OS X users may find they
need to use ~/Library/Haskell/bin instead. Some useful options to the IDRIS command are:

* —o prog to compile to an executable called prog.
® ——check type check the file and its dependencies without starting the interactive environment.

® ——help display usage summary and command line options

2.3 The Interactive Environment

Entering idris at the shell prompt starts up the interactive environment. You should see something
like the following:

S idris
O
A Y S A A Version 0.9.16
S/ () http://www.idris-lang.org/
/N, _/_/ /_/___/ Type :? for help
Idris>

This gives a ghci-style interface which allows evaluation of, as well as type checking of, expressions;
theorem proving, compilation; editing; and various other operations. The command :? gives a list
of supported commands. Listing 1 shows an example run in which hello. idr is loaded, the type of
main is checked and then the program is compiled to the executable hello. Type checking a file, if
successful, creates a bytecode version of the file (in this case hello. ibc) to speed up loading in future.
The bytecode is regenerated if the source file changes.


https://github.com/edwinb/Idris-dev

Listing 1: Sample Interactive Run
$ idris hello.idr

/o _/ /7 ()

A Y S A | Version 0.9.16
/S () http://www.idris-lang.org/
[ IN\__,_/_/ /_/ / Type :? for help

Type checking ./hello.idr
xhello> :t main

Main.main : IO ()
*hello> :c hello
*hello> :qg

Bye bye

$ ./hello

Hello world

3 Types and Functions

3.1 Primitive Types

IDRIS defines several primitive types: Int, Integer and Float for numeric operations, Char and
String for text manipulation, and Ptr which represents foreign pointers. There are also several
data types declared in the library, including Bool, with values True and False. We can declare
some constants with these types. Enter the following into a file prims. idr and load it into the IDRIS
interactive environment by typing idris prims.idr

module prims

x : Int
X = 42

foo : String

foo = "Sausage machine"
bar : Char
bar = '2!

quux : Bool
quux = False

An IDRIS file consists of an optional module declaration (here module prims) followed by an optional
list of imports (none here, however IDRIS programs can consist of several modules, and the definitions
in each module each have their own namespace, as we will discuss in Section 5) and a collection of
declarations and definitions. The order of definitions is significant — functions and data types must
be defined before use. Each definition must have a type declaration, for example see x : Int, foo

String, from the above listing. Indentation is significant — a new declaration begins at the same
level of indentation as the preceding declaration. Alternatively, declarations may be terminated with a
semicolon.

A library module prelude is automatically imported by every IDRIS program, including facilities
for IO, arithmetic, data structures and various common functions. The prelude defines several arithmetic
and comparison operators, which we can use at the prompt. Evaluating things at the prompt gives an
answer, and the type of the answer. For example:

*prims> 6%6+6



42 : Int
*prims> x == 6x6+6
True : Bool

All of the usual arithmetic and comparison operators are defined for the primitive types. They are
overloaded using type classes, as we will discuss in Section 4 and can be extended to work on user
defined types. Boolean expressions can be tested with the if...then. . .else construct:

*prims> if x == 6 * 6 + 6 then "The answer!" else "Not the answer"
"The answer!" : String

3.2 Data Types

Data types are declared in a similar way to Haskell data types, with a similar syntax. Natural numbers
and lists, for example, can be declared as follows:

data Nat = 7 | S Nat -- Natural numbers
-—- (zero and successor)
data List a = Nil | (::) a (List a) -- Polymorphic lists

The above declarations are taken from the standard library. Unary natural numbers can be either zero
(2), or the successor of another natural number (S k). Lists can either be empty (Ni1) or a value added
to the front of another list (x :: xs). In the declaration for List, we used an infix operator : :. New
operators such as this can be added using a fixity declaration, as follows:

infixr 10

Functions, data constructors and type constructors may all be given infix operators as names. They may
be used in prefix form if enclosed in brackets, e.g. (: :). Infix operators can use any of the symbols:

-k /=_.2]&><!@S$%

3.3 Functions

Functions are implemented by pattern matching, again using a similar syntax to Haskell. The main
difference is that IDRIS requires type declarations for all functions, using a single colon : (rather than
Haskell’s double colon : :). Some natural number arithmetic functions can be defined as follows, again
taken from the standard library:

—-— Unary addition

plus : Nat -> Nat -> Nat
plus Z vy =Y

plus (S k) v = S (plus k vy)

—-— Unary multiplication

mult : Nat -> Nat -> Nat

mult Z y = 2

mult (S k) vy plus y (mult k vy)

The standard arithmetic operators + and » are also overloaded for use by Nat, and are implemented
using the above functions. Unlike Haskell, there is no restriction on whether types and function names
must begin with a capital letter or not. Function names (plus and mult above), data constructors (z,
S,Nil and ::) and type constructors (Nat and List) are all part of the same namespace. We can test
these functions at the IDRIS prompt:



Idris> plus (S (S Z)) (S (S Z))

4 : Nat
Idris> mult (S (S (S Z))) (plus (S (S Z)) (S (S Z)))
12 : Nat

Note: IDRIS automatically desugars the Nat representation into a more human readable format. The
resultof plus (S (S Z)) (S (S Zz)) isactually (S (S (S (S 2)))) which is the Integer 4. This
can be checked at the IDRIS prompt:

Idris> (S (S (S (S Z))))
4 : Nat

Like arithmetic operations, integer literals are also overloaded using type classes, meaning that we can
also test the functions as follows:

Idris> plus 2 2

4 : Nat
Idris> mult 3 (plus 2 2)
12 : Nat

You may wonder, by the way, why we have unary natural numbers when our computers have perfectly
good integer arithmetic built in. The reason is primarily that unary numbers have a very convenient
structure which is easy to reason about, and easy to relate to other data structures as we will see later.
Nevertheless, we do not want this convenience to be at the expense of efficiency. Fortunately, IDRIS
knows about the relationship between Nat (and similarly structured types) and numbers. This means it
can optimise the representation, and functions such as plus and mult.

where clauses

Functions can also be defined locally using where clauses. For example, to define a function which
reverses a list, we can use an auxiliary function which accumulates the new, reversed list, and which
does not need to be visible globally:

reverse : List a -> List a
reverse xXs = revAcc [] xs where
revAcc : List a —> List a —> List a
revAcc acc [] = acc
revAcc acc (x :: xs) = revAcc (x :: acc) xs

Indentation is significant — functions in the where block must be indented further than the outer
function.

Scope: Any names which are visible in the outer scope are also visible in the where clause (unless
they have been redefined, such as xs here). A name which appears only in the type will be in scope in
the where clause if it is a parameter to one of the types, i.e. it is fixed across the entire structure.

As well as functions, where blocks can include local data declarations, such as the following where
MyLT is not accessible outside the definition of foo:

foo : Int -> Int
foo x = case isLT of
Yes => x*2
No => x=*4
where
data MyLT = Yes | No

isLT : MyLT
isLT = if x < 20 then Yes else No

In general, functions defined in a where clause need a type declaration just like any top level function.
However, the type declaration for a function £ can be omitted if:



e f appears in the right hand side of the top level definition

e The type of £ can be completely determined from its first application

So, for example, the following definitions are legal:

even : Nat —-> Bool

even Z = True

even (S k) = odd k where
odd Z = False
odd (S k) = even k

test : List Nat
test = [¢ (S 1), ¢ Z, d (S Z2)]
where ¢ x = 42 + x
dy =c¢c (v +1 + zvy)
where z w = y + w

3.4 Dependent Types
3.4.1 Vectors

A standard example of a dependent type is the type of “lists with length”, conventionally called vectors
in the dependent type literature. They are available as part of the IDRIS library, by importing Data.Vect,
or we can declare them as follows:

data Vect : Nat -> Type —-> Type where
Nil : Vect Z a
(::) : a —> Vect k a —> Vect (S k) a

Note that we have used the same constructor names as for List. Ad-hoc name overloading such as this
is accepted by IDRIS, provided that the names are declared in different namespaces (in practice, normally
in different modules). Ambiguous constructor names can normally be resolved from context.

This declares a family of types, and so the form of the declaration is rather different from the simple
type declarations above. We explicitly state the type of the type constructor vect — it takes a Nat and a
type as an argument, where Type stands for the type of types. We say that Vect is indexed over Nat and
parameterised by Type. Each constructor targets a different part of the family of types. Nil can only be
used to construct vectors with zero length, and : : to construct vectors with non-zero length. In the type
of : :, we state explicitly that an element of type a and a tail of type Vect k a (i.e., a vector of length k)
combine to make a vector of length s k.

We can define functions on dependent types such as Vect in the same way as on simple types such
as List and Nat above, by pattern matching. The type of a function over Vect will describe what
happens to the lengths of the vectors involved. For example, ++, defined as follows, appends two Vects:

(++) : Vect n a —> Vect m a —> Vect (n + m) a
(++) Nil ysS = ys
(++) (x :: xXs) ys = X :: xXs ++ ys

The type of (++) states that the resulting vector’s length will be the sum of the input lengths. If we
get the definition wrong in such a way that this does not hold, IDRIS will not accept the definition. For
example:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: Xs) ys = X :: Xs ++ XS -- BROKEN



When run through the IDRIS type checker, this results in the following:

$ idris vbroken.idr --check
vbroken.idr:9:23:When elaborating right hand side of Vect.++:
When elaborating an application of constructor Vect.:::
Can’t unify
Vect (k + k) a

with
Vect (plus k m) a
Specifically:
Can’t unify
plus k k
with
plus k m

This error message suggests that there is a length mismatch between two vectors — we needed a vector
of length k + m, but provided a vector of length k + k.

3.4.2 The Finite Sets

Finite sets, as the name suggests, are sets with a finite number of elements. They are available as part of
the IDRIS library, by importing Data.Fin, or can be declared as follows:

data Fin : Nat -> Type where
FZ : Fin (S k)
FS : Fin k -> Fin (S k)

F7 is the zeroth element of a finite set with S k elements; FS n is the n+1th element of a finite set with
S k elements. Fin is indexed by a Nat, which represents the number of elements in the set. Obviously
we can’t construct an element of an empty set, so neither constructor targets Fin Z.

A useful application of the Fin family is to represent bounded natural numbers. Since the first
n natural numbers form a finite set of n elements, we can treat Fin n as the set of natural numbers
bounded by n.

For example, the following function which looks up an element in a Vect, by a bounded index given
asaFin n,is defined in the prelude:

index : Fin n -> Vect n a -> a
index FZ (X :: x8) = X
index (FS k) (x :: xs) = index k xs

This function looks up a value at a given location in a vector. The location is bounded by the length of
the vector (n in each case), so there is no need for a run-time bounds check. The type checker guarantees
that the location is no larger than the length of the vector.

Note also that there is no case for Nil here. This is because it is impossible. Since there is no element
of Fin 2, and the locationisa Fin n, then n can notbe Z. As a result, attempting to look up an element
in an empty vector would give a compile time type error, since it would force n to be z.

3.4.3 Implicit Arguments

Let us take a closer look at the type of index:

index : Fin n -> Vect n a -> a

It takes two arguments, an element of the finite set of n elements, and a vector with n elements of type a.
But there are also two names, n and a, which are not declared explicitly. These are implicit arguments to
index. We could also write the type of index as:



index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

Implicit arguments, given in braces {} in the type declaration, are not given in applications of index;
their values can be inferred from the types of the Fin nand Vect n a arguments. Any name with a
lower case initial letter which appears as a parameter or index in a type declaration, but which is otherwise
free, will be automatically bound as an implicit argument. Implicit arguments can still be given explicitly
in applications, using {a=value} and {n=value}, for example:

index {a=Int} {n=2} FZ (2 :: 3 :: Nil)

In fact, any argument, implicit or explicit, may be given a name. We could have declared the type of
index as:

index : (i:Fin n) -> (xs:Vect n a) —-> a

It is a matter of taste whether you want to do this — sometimes it can help document a function by
making the purpose of an argument more clear.

3.4.4 "using” notation

Sometimes it is useful to provide types of implicit arguments, particularly where there is a dependency
ordering, or where the implicit arguments themselves have dependencies. For example, we may wish to
state the types of the implicit arguments in the following definition, which defines a predicate on vectors:

data Elem : a —-> Vect n a —> Type where
Here : {x:a} —> {xs:Vect n a} -—> Elem x (x :: xXS8)
There : {x,y:a} -> {xs:Vect n a} -> Elem x xs —-> Elem x (y :: Xs)

An instance of Elem x xs states that x is an element of xs. We can construct such a predicate if the
required element is Here, at the head of the vector, or There, in the tail of the vector. For example:

testVec : Vect 4 Int
testVec = 3 :: 4 :: 5 :: 6 :: Nil

inVect : Elem 5 testVec
inVect = There (There Here)

If the same implicit arguments are being used a lot, it can make a definition difficult to read. To avoid
this problem, a using block gives the types and ordering of any implicit arguments which can appear
within the block:

using (x:a, y:a, xs:Vect n a)
data Elem : a -> Vect n a —-> Type where

Here : Elem x (x :: xs3)
There : Elem x xs —-> Elem x (y :: Xs)

Note: Declaration Order and mutual blocks

In general, functions and data types must be defined before use, since dependent types allow functions
to appear as part of types, and their reduction behaviour to affect type checking. However, this
restriction can be relaxed by using a mutual block, which allows data types and functions to be
defined simultaneously:

10



mutual
even : Nat —-> Bool
even Z = True
even (S k) = odd k

odd : Nat -> Bool
odd Z = False
odd (S k) = even k

In a mutual block, first all of the type declarations are added, then the function bodies. As a result, none
of the function types can depend on the reduction behaviour of any of the functions in the block.

35 1/O0

Computer programs are of little use if they do not interact with the user or the system in some way. The
difficulty in a pure language such as IDRIS — that is, a language where expressions do not have side-
effects — is that I/O is inherently side-effecting. Therefore in IDRIS, such interactions are encapsulated
in the type I0:

data IO a -- IO operation returning a value of type a

We'll leave the definition of I0 abstract, but effectively it describes what the I/O operations to be
executed are, rather than how to execute them. The resulting operations are executed externally, by the
run-time system. We’ve already seen one IO program:

main : IO ()
main = putStrLn "Hello world"

The type of put St rLn explains that it takes a string, and returns an element of the unit type () via an
I/0 action. There is a variant put St r which outputs a string without a newline:

putStrLn : String -> IO ()
putStr : String -> IO ()

We can also read strings from user input:

getLine : IO String

A number of other I/O operations are defined in the prelude, for example for reading and writing files,
including:

data File -- abstract
data Mode = Read | Write | ReadWrite

openFile : String -> Mode -> IO File
closeFile : File -> IO ()

fread : File -> IO String
fwrite : File -> String -> IO ()
feof : File -> IO Bool

readFile : String -> IO String

11



3.6 “do” notation

I/0 programs will typically need to sequence actions, feeding the output of one computation into the
input of the next. I0 is an abstract type, however, so we can’t access the result of a computation directly.
Instead, we sequence operations with do notation:

greet : IO ()

greet = do putStr "What is your name?
name <- getLine
putStrLn ("Hello " ++ name)

The syntax x <- iovalue executes the I/O operation iovalue, of type I0 a, and puts the result,
of type a into the variable x. In this case, getLine returns an I0 String, so name has type String.
Indentation is significant — each statement in the do block must begin in the same column. The return
operation allows us to inject a value directly into an IO operation:

return : a —> IO a

As we will see later, do notation is more general than this, and can be overloaded.

3.7 Laziness

Normally, arguments to functions are evaluated before the function itself (that is, IDRIS uses eager
evaluation). However, this is not always the best approach. Consider the following function:

boolCase : Bool —> a —> a —> aj;
boolCase True t e = t;
boolCase False t e = ¢e;

This function uses one of the t or e arguments, but not both (in fact, this is used to implement the
if...then...else construct as we will see later. We would prefer if only the argument which was
used was evaluated. To achieve this, IDRIS provides a Lazy data type, which allows evaluation to be
suspended:

data Lazy : Type —-> Type where
Delay : (val : a) —-> Lazy a

Force : Lazy a —> a

A value of type Lazy a is unevaluated until it is forced by Force. The IDRIS type checker knows about
the Lazy type, and inserts conversions where necessary between Lazy a and a, and vice versa. We can
therefore write boolCase as follows, without any explicit use of Force or Delay:

boolCase : Bool —> Lazy a —-> Lazy a —> a;
boolCase True t e = t;
boolCase False t e = e;

3.8 Useful Data Types

IDRIS includes a number of useful data types and library functions (see the 1ibs/ directory in the distri-
bution). This chapter describes a few of these. The functions described here are imported automatically
by every IDRIS program, as part of Prelude. idr.

12



3.8.1 List and Vect

We have already seen the List and Vect data types:

data List a = Nil | (::) a (List a)

data Vect : Nat —-> Type —-> Type where
Nil : Vect Z a
(::) : a —> Vect k a —> Vect (S k) a

Note that the constructor names are the same for each — constructor names (in fact, names in general)
can be overloaded, provided that they are declared in different namespaces (see Section 5), and will
typically be resolved according to their type. As syntactic sugar, any type with the constructor names
Nil and :: can be written in list form. For example:

® [] meansNil
e [1,2,3]means1l :: 2 3 :: Nil

The library also defines a number of functions for manipulating these types. map is overloaded both for
List and Vect and applies a function to every element of the list or vector.

map : (a -> b) -> List a -> List b

map £ [] = []

map £ (x :: xs) = f x :: map f xs

map : (a -> b) -> Vect n a -> Vect n b
map £ [] =[]

map £ (x :: xs) = f x :: map f xs

For example, given the following vector of integers, and a function to double an integer:

intVec : Vect 5 Int
intVec = [1, 2, 3, 4, 5]

double : Int —-> Int
double x = x x 2
the function map can be used as follows to double every element in the vector:

susefultypes> show (map double intVec)
"[2, 4, 6, 8, 101" : String

You'll find these examples in usefultypes.idr in the examples/ directory. For more details of the
functions available on List and Vect, look in the library files:

® libs/prelude/Prelude/List.idr

e libs/prelude/Prelude/Vect.idr
Functions include filtering, appending, reversing, and so on. Also remember that IDRIS is still in
development, so if you don’t see the function you need, please feel free to add it and submit a patch!

Aside: Anonymous functions and operator sections

There are actually neater ways to write the above expression. One way would be to use an anonymous
function:

xrusefultypes> show (map (\x => x * 2) intVec)
"2, 4, 6, 8, 10]" : String
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The notation \x => val constructs an anonymous function which takes one argument, x and returns
the expression val. Anonymous functions may take several arguments, separated by commas, e.g.
\x, y, z => val. Arguments may also be given explicit types, e.g. \x : Int => x % 2,and can
pattern match, e.g. \ (x, y)=> x + y. We could also use an operator section:

susefultypes> show (map (* 2) intVec)
"2, 4, 6, 8, 101" : String

(x2) is shorthand for a function which multiplies a number by 2. It expands to \x => x x 2. Similarly,
(2x) would expand to \x => 2 * x.
3.8.2 Maybe
Maybe describes an optional value. Either there is a value of the given type, or there isn't:
data Maybe a = Just a | Nothing
Maybe is one way of giving a type to an operation that may fail. For example, looking something up in a

List (rather than a vector) may result in an out of bounds error:

list_lookup : Nat -> List a —-> Maybe a

list_lookup _ Nil = Nothing
list_lookup Z (x :: xs) = Just x
list_lookup (S k) (x :: xs) = list_lookup k xs

The maybe function is used to process values of type Maybe, either by applying a function to the value,
if there is one, or by providing a default value:

maybe : Lazy b -> (a -> b) -> Maybe a -> b

Note that the type of the first argument is Lazy b rather than simply b. Since the default value might
not be used, we mark it as Lazy in case it is a large expression where evaluating it then discarding it
would be wasteful.

3.8.3 Tuples and Dependent Pairs

Values can be paired with the following built-in data type:

data Pair a b = MkPair a b

As syntactic sugar, we can write (a, b) which, according to context, means either Pair a borMkPair
a b. Tuples can contain an arbitrary number of values, represented as nested pairs:

fred : (String, Int)

fred = ("Fred", 42)

jim : (String, Int, String)

Jjim = ("Jim", 25, "Cambridge")
Dependent Pairs

Dependent pairs allow the type of the second element of a pair to depend on the value of the first element.
Traditionally, these are referred to as “sigma types”:

data Sigma : (A : Type) -> (P : A -> Type) -> Type where
MkSigma : {P : A —-> Type} —> (a : A) -> P a —> Sigma A P
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Again, there is syntactic sugar for this. (a : A xx P) is the type of a pair of A and P, where the name
acanoccurinsideP. ( a ** p ) constructs a value of this type. For example, we can pair a number
with a Vect of a particular length.

vec : (n : Nat %% Vect n Int)
vec = (2 *x [3, 4])

If you like, you can write it out the long way, the two are precisely equivalent.

vec : Sigma Nat (\n => Vect n Int)
vec = MkSigma 2 [3, 4]

The type checker could of course infer the value of the first element from the length of the vector. We
can write an underscore _ in place of values which we expect the type checker to fill in, so the above
definition could also be written as:

vec : (n : Nat #** Vect n Int)
vec = (_ *x [3, 41)

We might also prefer to omit the type of the first element of the pair, since, again, it can be inferred:

vec : (n *%x Vect n Int)
vec = (_ *x [3, 41)

One use for dependent pairs is to return values of dependent types where the index is not necessarily
known in advance. For example, if we filter elements out of a Vect according to some predicate, we will
not know in advance what the length of the resulting vector will be:

filter : (a —-> Bool) -> Vect n a —> (p »x Vect p a)

If the Vect is empty, the result is easy:

filter p Nil = (_ ** [])

In the : : case, we need to inspect the result of a recursive call to filter to extract the length and the
vector from the result. To do this, we use with notation, which allows pattern matching on intermediate
values:

filter p (x :: xs) with (filter p xs)
| ( _ »x xs' ) = if (p x) then ( _ %+ x :: xs' ) else ( _ »x xs' )

We will see more on with notation later.

3.9 More Expressions
let bindings

Intermediate values can be calculated using 1et bindings:

mirror : List a —-> List a
mirror xs = let xs' = reverse xs in
xs ++ xs'

We can do simple pattern matching in 1et bindings too. For example, we can extract fields from a record
as follows, as well as by pattern matching at the top level:
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data Person = MkPerson String Int

showPerson : Person —-> String
showPerson p = let MkPerson name age = p in
name ++ " is " ++ show age ++ " years old"

List comprehensions
IDRIS provides comprehension notation as a convenient shorthand for building lists. The general form is:
[ expression | qualifiers ]

This generates the list of values produced by evaluating the expression, according to the conditions
given by the comma separated qualifiers. For example, we can build a list of Pythagorean triples as
follows:

pythag : Int -> List (Int, Int, Int)
pythagn = [ (x, y, z) | z <= [1l..n], v <= [l..z], x <= [1l..vy],
X*X + yxy == zZxz ]

The [a. .b] notation is another shorthand which builds a list of numbers between a and b. Alternatively
[a,b..c] builds a list of numbers between a and ¢ with the increment specified by the difference
between a and b. This works for any numeric type, using the count function from the prelude.

case expressions

Another way of inspecting intermediate values of simple types is to use a case expression. The following
function, for example, splits a string into two at a given character:

splitAt : Char -> String -> (String, String)
splitAt ¢ x = case break (== c) x of
(x, y) => (x, strTail vy)

break is a library function which breaks a string into a pair of strings at the point where the given
function returns true. We then deconstruct the pair it returns, and remove the first character of the second
string.

A case expression can match several cases, for example, to inspect an intermediate value of type
Maybe a. Recall 1ist_lookup which looks up an index in a list, returning Nothing if the index is out
of bounds. We can use this to write lookup_default, which looks up an index and returns a default
value if the index is out of bounds:

lookup_default : Nat -> List a -> a -> a
lookup_default 1 xs def = case list_lookup i xs of
Nothing => def
Just x => x

If the index is in bounds, we get the value at that index, otherwise we get a default value:

susefultypes> lookup_default 2 [3,4,5,6] (-1)
5 : Integer
xusefultypes> lookup_default 4 [3,4,5,6] (-1)

-1 : Integer

Restrictions: The case construct is intended for simple analysis of intermediate expressions to avoid
the need to write auxiliary functions, and is also used internally to implement pattern matching let and
lambda bindings. It will only work if:

® Each branch matches a value of the same type, and returns a value of the same type.
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¢ The type of the result is “known”. i.e. the type of the expression can be determined without type
checking the case-expression itself.

3.10 Dependent Records

Records are data types which collect several values (the record’s fields) together. IDRIS provides syntax for
defining records and automatically generating field access and update functions. For example, we can
represent a person’s name and age in a record:

record Person : Type where
MkPerson : (name : String) ->
(age : Int) —-> Person

fred : Person
fred = MkPerson "Fred" 30

Record declarations are like dat a declarations, except that they are introduced by the record keyword,
and can only have one constructor. The names of the binders in the constructor type (name and age)
here are the field names, which we can use to access the field values:

*record> name fred
"Fred" : String
*record> age fred

30 : Int

*record> :t name

name : Person —> String

We can also use the field names to update a record (or, more precisely, produce a new record with the
given fields updated).

*record> record { name = "Jim" } fred

MkPerson "Jim" 30 : Person

x*record> record { name = "Jim", age = 20 } fred

MkPerson "Jim" 20 : Person
The syntax record { field = val, ... } generatesa function which updates the given fields
in a record.

Records, and fields within records, can have dependent types. Updates are allowed to change the
type of a field, provided that the result is well-typed, and the result does not affect the type of the record
as a whole. For example:

record Class : Type where
ClassInfo : (students : Vect n Person) ->
(className : String) ->
Class

It is safe to update the students field to a vector of a different length because it will not affect the type
of the record:

addStudent : Person —> Class —> Class

addStudent p ¢ = record { students = p :: students c } c

*record> addStudent fred (ClassInfo [] "CS")

ClassInfo (prelude.vect.:: (MkPerson "Fred" 30) (prelude.vect.Nil)) "CS"
Class
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Nested record update

IDRIS also provides a convenient syntax for accessing and updating nested records. For example, if a
field is accessible with the expression ¢ (b (a x) ), it can be updated using the following syntax:

record { a->b->c = val } x

This returns a new record, with the field accessed by the path a->b->c set to x. The syntax is first
class,ie. record { a->b->c = val } itself has a function type. Symmetrically, the field can also be
accessed with the following syntax:

record { a-—>b->c } x

4 Type Classes

We often want to define functions which work across several different data types. For example, we
would like arithmetic operators to work on Int, Integer and Float at the very least. We would like
== to work on the majority of data types. We would like to be able to display different types in a uniform
way.

To achieve this, we use a feature which has proved to be effective in Haskell, namely type classes. To
define a type class, we provide a collection of overloaded operations which describe the interface for
instances of that class. A simple example is the Show type class, which is defined in the prelude and
provides an interface for converting values to String:

class Show a where
show : a —-> String

This generates a function of the following type (which we call a method of the Show class):

show : Show a => a —-> String

We can read this as: “under the constraint that a is an instance of Show, take an input a and return
a String.” An instance of a class is defined with an instance declaration, which provides imple-
mentations of the function for a specific type. For example, the Show instance for Nat could be defined
as:

instance Show Nat where
show Z2 = "z2"
show (S k) = "s" ++4+ show k

Idris> show (S (S (S Z)))
"sssZ" : String

Only one instance of a class can be given for a type — instances may not overlap. Instance declarations
can themselves have constraints. For example, to define a Show instance for vectors, we need to know
that there is a Show instance for the element type, because we are going to use it to convert each element
toa String:

instance Show a => Show (Vect n a) where

show xs = "[" ++ show' xs ++ "]" where
show' : Vect n a -> String
show' Nil = "n
show' (x :: Nil) = show x
show' (x :: x8) = show x ++ ", " ++ show' xs
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4.1 Default Definitions

The library defines an Eq class which provides an interface for comparing values for equality or inequality,
with instances for all of the built-in types:

class Eg a where
(==) : a —> a —> Bool
(/=) : a -> a —-> Bool

To declare an instance of a type, we have to give definitions of all of the methods. For example, for an
instance of Eq for Nat:

instance Eg Nat where

Z == = True
(5 x) == (S y) =x ==
Z == (S y) = False
(S x) == 12 = False
X /=y = not (x == vy)

It is hard to imagine many cases where the /= method will be anything other than the negation of the
result of applying the == method. It is therefore convenient to give a default definition for each method
in the class declaration, in terms of the other method:

class Eg a where
(==) : a —> a —> Bool

(/=) : a -> a -> Bool
X /=y = not (x == vy)
x ==y = not (x /=vy)

A minimal complete definition of an Eq instance requires either == or /= to be defined, but does not

require both. If a method definition is missing, and there is a default definition for it, then the default is
used instead.

4.2 Extending Classes

Classes can also be extended. A logical next step from an equality relation Eq is to define an ordering
relation Ord. We can define an Ord class which inherits methods from Eq as well as defining some of its
own:

data Ordering = LT | EQ | GT

class Eq a => Ord a where

compare : a —> a —> Ordering
(<) a -> a —> Bool

(>) : a —> a —> Bool

(<=) : a —> a —> Bool

(>=) : a —> a —> Bool

max : a —> a —> a

min : a -> a -> a

The Ord class allows us to compare two values and determine their ordering. Only the compare method
is required; every other method has a default definition. Using this we can write functions such as sort,
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a function which sorts a list into increasing order, provided that the element type of the list is in the Ord
class. We give the constraints on the type variables left of the fat arrow =>, and the function type to the
right of the fat arrow:

sort : Ord a => List a —-> List a

Functions, classes and instances can have multiple constraints. Multiple constaints are written in brackets
in a comma separated list, for example:

sortAndShow : (Ord a, Show a) => List a —-> String
sortAndShow xs = show (sort xs)

4.3 Functors and Applicatives

So far, we have seen single parameter type classes, where the parameter is of type Type. In general, there
can be any number (greater than 0) of parameters, and the parameters can have any type. If the type of
the parameter is not Type, we need to give an explicit type declaration. For example, the Functor class
is defined in the library:

class Functor (f : Type -> Type) where
map : (m : a -—> b) > f a > £ b

A functor allows a function to be applied across a structure, for example to apply a function to every
elementina List:

instance Functor List where
map f [] =[]
map f (x::xs) = £ x :: map f xs

Idris> map (*2) [1..10]
(2, 4, 6, 8, 10, 12, 14, 16, 18, 20] : List Integer

Having defined Functor, we can define Applicative which abstracts the notion of function applica-

tion:

infixl 2 <$>

class Functor f => Applicative (f : Type —-> Type) where
pure : a —> f a
(<$>) ¢+ £ (a -—>b) > f a—->fb

4.4 Monads and do-notation
The Monad class allows us to encapsulate binding and computation, and is the basis of do-notation
introduced in Section 3.6. It extends Applicative as defined above, and is defined as follows:
class Applicative m => Monad (m : Type —-> Type) where
(>>=) t:ma -—> (a->mb) —>mb
Inside a do block, the following syntactic transformations are applied:
* x <- v; ebecomesv »= (\x => e)

* v; ebecomesv »= (\_ => e)

20



e let x = v; ebecomeslet x = v in e

I0 is an instance of Monad, defined using primitive functions. We can also define an instance for Maybe,
as follows:

instance Monad Maybe where
Nothing >>= k = Nothing
(Just x) >>= k = k x

Using this we can, for example, define a function which adds two Maybe Ints, using the monad to
encapsulate the error handling:

m_add : Maybe Int -> Maybe Int -> Maybe Int

m_add x y = do X' <- X -- Extract value from x
y' <-y -- Extract value from y
return (x' + y') -- Add them

This function will extract the values from x and vy, if they are available, or return Nothing if they are
not. Managing the Nothing cases is achieved by the »= operator, hidden by the do notation.

*classes> m_add (Just 20) (Just 22)
Just 42 : Maybe Int

xclasses> m_add (Just 20) Nothing
Nothing : Maybe Int

!-notation

In many cases, using do-notation can make programs unnecessarily verbose, particularly in cases such as
m_add above where the value bound is used once, immediately. In these cases, we can use a shorthand
version, as follows:

m_add : Maybe Int -> Maybe Int —-> Maybe Int
m_add x y = return (!x + !y)

The notation ! expr means that the expression expr should be evaluated and then implicitly bound.
Conceptually, we can think of ! as being a prefix function with the following type:

(') : ma -> a

Note, however, that it is not really a function, merely syntax! In practice, a subexpression ! expr will lift
expr as high as possible within its current scope, bind it to a fresh name x, and replace ! expr with x.
Expressions are lifted depth first, left to right. In practice, !-notation allows us to program in a more
direct style, while still giving a notational clue as to which expressions are monadic.

For example, the expression. ..

let v = 42 in £ ! (g ! (print y) !x)
...is lifted to:

let v = 42 in do y' <- print y
' <- x

<- gy' x
gl

A} A}

be
g9
f
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Monad comprehensions

The list comprehension notation we saw in Section 3.9 is more general, and applies to anything which is
an instance of both Monad and Alternative:

class Applicative f => Alternative (f : Type —-> Type) where
empty : £ a
(<]>) +: £fa->fa->fa

In general, a comprehension takes the form [ exp | quall, qual2, ..., qualn ] wherequali
can be one of:

* A generator x <- e
* A guard, which is an expression of type Bool

e Aletbinding let x = e

To translate a comprehension [exp | quall, qual2, ..., qualn], firstany qualifier qual which
is a guard is translated to guard qual, using the following function:

guard : Alternative f => Bool -> f ()

Then the comprehension is converted to do notation:

do { quall; qual2; ...; qualn; return exp; }

Using monad comprehensions, an alternative definition for m_add would be:

m_add : Maybe Int -> Maybe Int -> Maybe Int
madd x y = [ x'" +y' | x' <= x, y' <=y ]

4.5 Idiom brackets

While do notation gives an alternative meaning to sequencing, idioms give an alternative meaning to
application. The notation and larger example in this section is inspired by Conor McBride and Ross
Paterson’s paper “Applicative Programming with Effects” [8].

First, let us revisit m_add above. All it is really doing is applying an operator to two values extracted
from Maybe Int’s. We could abstract out the application:

m_app : Maybe (a -> b) -> Maybe a -> Maybe b
m_app (Just f) (Just a) = Just (f a)
m_app _ _ Nothing

Using this, we can write an alternative m_add which uses this alternative notion of function application,
with explicit calls to m_app:

m_add' : Maybe Int -> Maybe Int -> Maybe Int
m_add' x y = m_app (m_app (Just (+)) x) vy

Rather than having to insert m_app everywhere there is an application, we can use idiom brackets to do
the job for us. To do this, we can make Maybe an instance of Applicative as follows, where <$> is
defined in the same way as m_app above (this is defined in the IDRIS library):
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instance Applicative Maybe where
pure = Just

(Just f) <$> (Just a) = Just (f a)
<S> = Nothing

Using idiom brackets we can use this instance as follows, where a function application [ | £ al ...an
| ] is translated into pure £ <$> al <$> ...<$> an:

m_add' : Maybe Int -> Maybe Int -> Maybe Int
m add' x vy = [| x + vy [|]

451 An error-handling interpreter

Idiom notation is commonly useful when defining evaluators. McBride and Paterson describe such an
evaluator [8], for a language similar to the following:

data Expr = Var String -- variables
| Val Int -—- values
| Add Expr Expr -- addition

Evaluation will take place relative to a context mapping variables (represented as St rings) to integer
values, and can possibly fail. We define a data type Eval to wrap an evaluator:

data Eval : Type —-> Type where
MkEval : (List (String, Int) -> Maybe a) -> Eval a

Wrapping the evaluator in a data type means we will be able to make it an instance of a type class later.
We begin by defining a function to retrieve values from the context during evaluation:

fetch : String -> Eval Int
fetch x = MkEval (\e => fetchvVal e) where
fetchval : List (String, Int) —-> Maybe Int
fetchval [] = Nothing
fetchval ((v, wval) :: xs) = if (x == v)
then (Just wval)
else (fetchvVal xs)

When defining an evaluator for the language, we will be applying functions in the context of an Eval, soit
is natural to make Eval an instance of Applicative. Before Eval can be an instance of Applicative
it is necessary to make Eval an instance of Functor:

instance Functor Eval where
map f (MkEval g) = MkEval (\e => map f (g e))

instance Applicative Eval where
pure x = MkEval (\e => Just x)

(<$>) (MkEval f) (MkEval g) = MkEval (\x => app (f x) (g x)) where
app : Maybe (a —> b) —-> Maybe a —> Maybe b
app (Just fx) (Just gx) = Just (fx gx)
app _ _ = Nothing

Evaluating an expression can now make use of the idiomatic application to handle errors:
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eval : Expr —-> Eval Int

eval (Var x) = fetch x

eval (Val x) [ x |1

eval (Add x y) [| eval x + eval y |]

runkEval : List (String, Int) -> Expr —-> Maybe Int
runEval env e = case eval e of
MkEval envFn => envFn env

4.6 Named Instances

It can be desirable to have multiple instances of a type class, for example to provide alternative methods
for sorting or printing values. To achieve this, instances can be named as follows:

instance [myord] Ord Nat where

compare Z (S n) = GT
compare (S n) Z = LT
compare 7Z 7 = EQ
compare (S x) (S y) = compare @{myord} x y

This declares an instance as normal, but with an explicit name, myord. The syntax compare @{myord}
gives an explicit instance to compare, otherwise it would use the default instance for Nat. We can use
this, for example, to sort a list of Nats in reverse. Given the following list:

testList : List Nat
testList = [3,4,1]

...we can sort it using the default Ord instance, then the named instance myord as follows, at the IDRIS
prompt:

*named_instance> show (sort testlList)

"[sO, sssO, ssssO]" : String
*named_instance> show (sort @{myord} testList)
"[ssssO, sssO, sO]" : String

5 Modules and Namespaces

An IDRIS program consists of a collection of modules. Each module includes an optional module
declaration giving the name of the module, a list of import statements giving the other modules which
are to be imported, and a collection of declarations and definitions of types, classes and functions. For
example, Listing 2 gives a module which defines a binary tree type BTree (in a file bt ree. idr) and
Listing 3 gives a main program (in a file bmain. idr which uses the bst module to sort a list.

The same names can be defined in multiple modules. This is possible because in practice names are
qualified with the name of the module. The names defined in the bt ree module are, in full:

® btree.BTree, ® btree.insert,
® btree.Leaf, ® btree.tolist,
® btree.Node, ® btree.toTree.

If names are otherwise unambiguous, there is no need to give the fully qualified name. Names can be
disambiguated either by giving an explicit qualification, or according to their type.

There is no formal link between the module name and its filename, although it is generally advisable to
use the same name for each. An import statement refers to a filename, using dots to separate directories.
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Listing 2: Binary Tree Module

module btree

data BTree a = Leaf
| Node (BTree a) a (BTree a)

insert : Ord a => a —-> BTree a —> BTree a
insert x Leaf = Node Leaf x Leaf
insert x (Node 1 v r) = if (x < v) then (Node (insert x 1) v r)

else (Node 1 v (insert x r))

toList : BTree a —-> List a
tolist Leaf = []
tolList (Node 1 v r) = btree.tolList 1 ++ (v :: btree.tolist r)

toTree : Ord a => List a -> BTree a
toTree [] = Leaf
toTree (X :: xs) = insert x (toTree xs)

Listing 3: Binary Tree Main Program

module Main
import btree
main : IO ()

main = do let t = toTree [1,8,2,7,9,3]
print (btree.tolist t)
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For example, import foo.bar would import the file foo/bar.idr, which would conventionally
have the module declaration module foo.bar. The only requirement for module names is that
the main module, with the main function, must be called Main—although its filename need not be
Main.idr.

5.1 Export Modifiers

By default, all names defined in a module are exported for use by other modules. However, it is good
practice only to export a minimal interface and keep internal details abstract. IDRIS allows functions,
types, and classes to be marked as: public, abstract or private:

* public means that both the name and definition are exported. For functions, this means that
the implementation is exported (which means, for example, it can be used in a dependent type).
For data types, this means that the type name and the constructors are exported. For classes, this
means that the class name and method names are exported.

* abstract means that only the name is exported. For functions, this means that the implementation
is not exported. For data types, this means that the type name is exported but not the constructors.
For classes, this means that the class name is exported but not the method names.

* private means that neither the name nor the definition is exported.

Note: If any definition is given an export modifier, then all names with no modifier are assumed to be
private.

For our bt ree module, it makes sense for the tree data type and the functions to be exported as
abstract, as we see in Listing 4.

Listing 4: Binary Tree Module, with export modifiers
module btree

abstract data BTree a = Leaf
| Node (BTree a) a (BTree a)

abstract

insert : Ord a => a —-> BTree a —> BTree a

insert x Leaf = Node Leaf x Leaf

insert x (Node 1 v r) = if (x < v) then (Node (insert x 1) v r)
else (Node 1 v (insert x r))

abstract

toList : BTree a —> List a

toList Leaf = []

tolList (Node 1 v r) = btree.tolList 1 ++ (v :: btree.tolist r)

abstract

toTree : Ord a => List a —-> BTree a

toTree [] = Leaf

toTree (X :: Xs) = insert x (toTree xs)

Finally, the default export mode can be changed with the $access directive, for example:

%access abstract

In this case, any function with no access modifier will be exported as abstract, rather than left
private.

Additionally, a module can re-export a module it has imported, by using the public modifier on an
import. For example:
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module A

import B
import public C

public a : AType
a:

The module A will export the name a, as well as any public or abstract names in module C, but will not
re-export anything from module B.

5.2 Explicit Namespaces

Defining a module also defines a namespace implicitly. However, namespaces can also be given explicitly.
This is most useful if you wish to overload names within the same module:

module foo

namespace x
test : Int —-> Int
test x = x * 2

namespace y
test : String -> String
test x = x ++ x

This (admittedly contrived) module defines two functions with fully qualified names foo.x.test and
foo.y.test, which can be disambiguated by their types:

+foo> test 3

6 : Int
*foo> test "foo"
"foofoo" : String

5.3 Parameterised blocks

Groups of functions can be parameterised over a number of arguments using a parameters declaration,
for example:

parameters (x : Nat, y : Nat)
addAll : Nat —-> Nat
addAll z = x +y + z

The effect of a parameters block is to add the declared parameters to every function, type and data
constructor within the block. Outside the block, the parameters must be given explicitly:

*params> :t addAll
addAll : Nat -> Nat -> Nat -> Nat

Parameters blocks can be nested, and can also include data declarations, in which case the parameters

are added explicitly to all type and data constructors. They may also be dependent types with implicit
arguments:

parameters (y : Nat, xs : Vect x a)
data Vects : Type —-> Type where
MkVects : Vect y a —-> Vects a
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append : Vects a -> Vect (x + y) a
append (MkVects ys) = xs ++ ys

To use Vects or append outside the block, we must also give the xs and y arguments. Here, we can
use placeholders for the values which can be inferred by the type checker:

*params> show (append _ _ (MkVects _ [1,2,3] [4,5,6]1))
"1, 2, 3, 4, 5, 61" : String

6 Example: The Well-Typed Interpreter

In this section, we’ll use the features we’ve seen so far to write a larger example, an interpreter for a
simple functional programming language, with variables, function application, binary operators and an
if...then...else construct. We will use the dependent type system to ensure that any programs
which can be represented are well-typed.

6.1 Representing Languages

First, let us define the types in the language. We have integers, booleans, and functions, represented by
Ty:

data Ty = TyInt | TyBool | TyFun Ty Ty

We can write a function to translate these representations to a concrete IDRIS type — remember that
types are first class, so can be calculated just like any other value:

interpTy : Ty —> Type

interpTy TyInt = Int

interpTy TyBool Bool

interpTy (TyFun A T) interpTy A —-> interpTy T

We’re going to define a representation of our language in such a way that only well-typed programs
can be represented. We’ll index the representations of expressions by their type and the types of local
variables (the context), which we’ll be using regularly as an implicit argument, so we define everything
in a using block:

using (G:Vect n Ty)

The full representation of expressions is given in Listing ??. They are indexed by the types of the local
variables, and the type of the expression itself:

data Expr : Vect n Ty -> Ty —-> Type

Since expressions are indexed by their type, we can read the typing rules of the language from the
definitions of the constructors. Let us look at each constructor in turn.

data HasType : (1 : Fin n) -> Vect n Ty -> Ty -> Type where
Stop : HasType FZ (t :: G) t
Pop : HasType k G t —> HasType (FS k) (u :: G) t

data Expr : Vect n Ty -> Ty —-> Type where
Var : HasType i G t -> Expr G t
Val : (x : Int) —> Expr G TyInt
Lam : Expr (a :: G) t —> Expr G (TyFun a t)
App : Expr G (TyFun a t) -> Expr G a —> Expr G t
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Op : (interpTy a —> interpTy b -> interpTy c) ->
Expr G a —> Expr G b —> Expr G ¢

If : Expr G TyBool —>
Lazy (Expr G a) ->
Lazy (Expr G a) —-> Expr G a

We use a nameless representation for variables — they are de Bruijn indexed. Variables are represented by
a proof of their membership in the context, HasType i G T, which is a proof that variable i in context
G has type T. This is defined as follows:

data HasType : (i : Fin n) -> Vect n Ty -> Ty -> Type where
Stop : HasType FZ (t :: G) t
Pop : HasType k G t —> HasType (FS k) (u :: G) t

We can treat Stop as a proof that the most recently defined variable is well-typed, and Pop n as a proof
that, if the nth most recently defined variable is well-typed, so is the n+1th. In practice, this means we
use Stop to refer to the most recently defined variable, Pop Stop to refer to the next, and so on, via the
Var constructor:

Var : HasType 1 G t -> Expr G t

So, in an expression \x, \y. x vy, the variable x would have a de Bruijn index of 1, represented as Pop
Stop,and y 0, represented as Stop. We find these by counting the number of lambdas between the
definition and the use.

A value carries a concrete representation of an integer:

Val : (x : Int) —-> Expr G TyInt

A lambda creates a function. In the scope of a function of type a —> t, there is a new local variable of
type a, which is expressed by the context index:

Lam : Expr (a :: G) t —> Expr G (TyFun a t)

Function application produces a value of type t given a function from a to t and a value of type a:

App : Expr G (TyFun a t) -> Expr G a —> Expr G t

We allow arbitrary binary operators, where the type of the operator informs what the types of the
arguments must be:

Op : (interpTy a —> interpTy b -> interpTy c) —>
Expr G a —> Expr G b -> Expr G c

Finally, if expressions make a choice given a boolean. Each branch must have the same type, and we will
evaluate the branches lazily so that only the branch which is taken need be evaluated:

If : Expr G TyBool ->
Lazy (Expr G a) ->
Lazy (Expr G a) —>
Expr G a

6.2 Writing the Interpreter

When we evaluate an Expr, we'll need to know the values in scope, as well as their types. Env is an
environment, indexed over the types in scope. Since an environment is just another form of list, albeit
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with a strongly specified connection to the vector of local variable types, we use the usual : : and Nil
constructors so that we can use the usual list syntax. Given a proof that a variable is defined in the
context, we can then produce a value from the environment:

data Env : Vect n Ty —-> Type where
Nil : Env Nil
(::) : interpTy a -> Env G -> Env (a :: G)

lookup : HasType 1 G t —-> Env G —> interpTy t

lookup Stop (x :: x8) = X
lookup (Pop k) (x :: xs) = lookup k xs

interp : Env G -> Expr G t —-> interpTy t

interp env (Var i) = lookup i env

interp env (Val x) = X

interp env (Lam sc) = \x => interp (x :: env) sc
pp f s) = interp env f (interp env s)

interp env (Op op x y) = op (interp env x) (interp env vy)
If x t e) if interp env x then interp env t
else interp env e

(

(
interp env (A

(

(

interp env

Given this, an interpreter (Listing ??) is a function which translates an Expr into a concrete IDRIS value
with respect to a specific environment:

interp : Env G —> Expr G t —-> interpTy t

To translate a variable, we simply look it up in the environment:

interp env (Var i) = lookup i env

To translate a value, we just return the concrete representation of the value:

interp env (Val x) = x

Lambdas are more interesting. In this case, we construct a function which interprets the scope of the
lambda with a new value in the environment. So, a function in the object language is translated to an
IDRIS function:

interp env (Lam sc) = \x => interp (x :: env) sc

For an application, we interpret the function and its argument and apply it directly. We know that
interpreting £ must produce a function, because of its type:

interp env (App f s) = interp env f (interp env s)

Operators and interpreters are, again, direct translations into the equivalent IDRIS constructs. For operat-
ors, we apply the function to its operands directly, and for I£, we apply the IDRIS if. ..then...else
construct directly.

interp env (Op op x y) = op (interp env x) (interp env vy)
interp env (If x t e) if interp env x then interp env t
else interp env e
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6.3 Testing

We can make some simple test functions. Firstly, adding two inputs \x. \y. y + x is written as
follows:

add : Expr G (TyFun TyInt (TyFun TyInt TyInt))
add = Lam (Lam (Op (+) (Var Stop) (Var (Pop Stop))))

More interestingly, a factorial function fact (e.g. \x. if (x == 0) then 1 else (fact (x-1)
* x) ), can be written as:

fact : Expr G (TyFun TyInt TyInt)

fact = Lam (If (Op (==) (Var Stop) (vVal 0))
(Val 1)
(Op (%) (App fact (Op (=) (Var Stop) (Val 1)))
(Var Stop)))

6.4 Running

To finish, we write a main program which interprets the factorial function on user input:

main : IO ()

main = do putStr "Enter a number:
x <- getLine
print (interp [] fact (cast x))

Here, cast is an overloaded function which converts a value from one type to another if possible. Here,
it converts a string to an integer, giving 0 if the input is invalid. An example run of this program at the
IDRIS interactive environment is shown in Listing 5.

Listing 5: Running the well-typed interpreter
$ idris interp.idr

/o _/ /7 ()

VA Y Y A | Version 0.9.16
/S () http://www.idris-lang.org/
[ IN\__,_/_/ /_/ / Type :? for help

Type checking ./interp.idr
x*interp> :exec

Enter a number: 6

720

*interp>

Aside: cast

The prelude defines a type class Cast which allows conversion between types:

class Cast from to where
cast : from -> to

It is a multi-parameter type class, defining the source type and object type of the cast. It must be possible
for the type checker to infer both parameters at the point where the cast is applied. There are casts defined
between all of the primitive types, as far as they make sense.
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7 Views and the “with” rule

7.1 Dependent pattern matching

Since types can depend on values, the form of some arguments can be determined by the value of others.
For example, if we were to write down the implicit length arguments to (++), we’d see that the form of
the length argument was determined by whether the vector was empty or not:

(++) : Vect n a —> Vect m a -> Vect (n + m) a
(++) {n=2} [] ys = ys
(++) {n=S k} (x :: xs) ys = x :: xXs ++ ys

If n was a successor in the [] case, or zero in the : : case, the definition would not be well typed.

7.2 The with rule — matching intermediate values

Very often, we need to match on the result of an intermediate computation. IDRIS provides a construct
for this, the with rule, inspired by views in EPIGRAM [7], which takes account of the fact that matching
on a value in a dependently typed language can affect what we know about the forms of other values.
In its simplest form, the with rule adds another argument to the function being defined, e.g. we have
already seen a vector filter function, defined as follows:

filter (a => Bool) —> Vect n a —-> (p *x Vect p a)
filter p [] = ( _ ** [] )
filter p (x :: xs) with (filter p xs)
| ( _ »x xs' ) = if (p x) then ( _ %% x :: xs' ) else ( _ »x xs' )

Here, the with clause allows us to deconstruct the result of filter p xs. Effectively, it adds this value
as an extra argument, which we place after the vertical bar.

If the intermediate computation itself has a dependent type, then the result can affect the forms of
other arguments — we can learn the form of one value by testing another. For example, a Nat is either
even or odd. If it’s even it will be the sum of two equal Nats. Otherwise, it is the sum of two equal Nats
plus one:

data Parity : Nat —-> Type where
Even : Parity (n + n)
O0dd : Parity (S (n + n))

We say Parity is a view of Nat. It has a covering function which tests whether it is even or odd and
constructs the predicate accordingly.

parity : (n:Nat) -> Parity n

We’ll come back to the definition of parity shortly. We can use it to write a function which converts a
natural number to a list of binary digits (least significant first) as follows, using the with rule:

natToBin : Nat -> List Bool

natToBin Z = Nil

natToBin k with (parity k)
natToBin (j + 7Jj) | Even = False :: natToBin j
natToBin (S (j + J)) | O0dd = True :: natToBin j

The value of the result of parity k affects the form of k, because the result of parity k depends on k.
So, as well as the patterns for the result of the intermediate computation (Even and odd) right of the |,
we also write how the results affect the other patterns left of the |. Note that there is a function in the
patterns (+) and repeated occurrences of j—this is allowed because another argument has determined
the form of these patterns.

We will return to this function in Section 9 to complete the definition of parity.
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8 Theorem Proving

8.1 Equality

IDRIS allows propositional equalities to be declared, allowing theorems about programs to be stated and
proved. Equality is built in, but conceptually has the following definition:

data (=) : a -> b —-> Type where
Refl : x = x

Equalities can be proposed between any values of any types, but the only way to construct a proof of
equality is if values actually are equal. For example:

fivelIsFive : 5 = 5
fivelsFive = Refl

twoPlusTwo : 2 + 2 = 4
twoPlusTwo = Refl

8.2 The Empty Type

There is an empty type, L, which has no constructors. It is therefore impossible to construct an element
of the empty type, at least without using a partially defined or general recursive function (see Section 8.5
for more details). We can therefore use the empty type to prove that something is impossible, for example
zero is never equal to a successor:

disjoint : (n : Nat) -> Z = S n —-> Void
disjoint n p = replace {P = disjointTy} p ()
where

disjointTy : Nat -> Type
disjointTy Z = ()
disjointTy (S k) = Void

There is no need to worry too much about how this function works — essentially, it applies the library
function replace, which uses an equality proof to transform a predicate. Here we use it to transform a
value of a type which can exist, the empty tuple, to a value of a type which can’t, by using a proof of
something which can’t exist.

Once we have an element of the empty type, we can prove anything. void is defined in the library,
to assist with proofs by contradiction.

void : Void -> a

8.3 Simple Theorems

When type checking dependent types, the type itself gets normalised. So imagine we want to prove the
following theorem about the reduction behaviour of plus:

plusReduces : (n:Nat) -> plus Z n = n

We’ve written down the statement of the theorem as a type, in just the same way as we would write the
type of a program. In fact there is no real distinction between proofs and programs. A proof, as far as we
are concerned here, is merely a program with a precise enough type to guarantee a particular property of
interest.

We won't go into details here, but the Curry-Howard correspondence [6] explains this relationship.
The proof itself is trivial, because plus Z n normalises to n by the definition of plus:
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plusReduces n = Refl

It is slightly harder if we try the arguments the other way, because plus is defined by recursion on its
first argument. The proof also works by recursion on the first argument to plus, namely n.

plusReducesZ : (n:Nat) -> n = plus n 2
plusReducesZ Z = Refl
plusReducesZ (S k) = cong (plusReducesZ k)

cong is a function defined in the library which states that equality respects function application:

cong : {f : t -—>u} —>a=Db ->f a=1fDb

We can do the same for the reduction behaviour of plus on successors:

plusReducesS : (n:Nat) -> (m:Nat) -> S (plus n m) = plus n (S m)
plusReducesS Z m = Refl
plusReducesS (S k) m = cong (plusReducesS k m)

Even for trival theorems like these, the proofs are a little tricky to construct in one go. When things get
even slightly more complicated, it becomes too much to think about to construct proofs in this ‘batch
mode’. IDRIS therefore provides an interactive proof mode.

8.4 Interactive theorem proving

Instead of writing the proof in one go, we can use IDRIS’s interactive proof mode. To do this, we write the
general structure of the proof, and use the interactive mode to complete the details. We'll be constructing
the proof by induction, so we write the cases for Z and S, with a recursive call in the S case giving the
inductive hypothesis, and insert metavariables for the rest of the definition:

plusReducesZ' : (n:Nat) —-> n = plus n Z
plusReducesZ' Z = ?plusredZ_2
plusReducesZ' (S k) = let ih = plusReducesZ' k in

?plusredZ_S

On running IDRIS, two global names are created, plusredZ_Z and plusredZ_s, with no definition.
We can use the :m command at the prompt to find out which metavariables are still to be solved (or,
more precisely, which functions exist but have no definitions), then the : t command to see their types:

*theorems> :m
Global metavariables:
[plusredZ_S,plusredZ_7Z]

*theorems> :t plusredZ_Z
plusredZ_7Z : Z = plus Z Z

*theorems> :t plusredZ_S
plusredZ_S : (k : Nat) -> (k = plus k Z) —> S k = plus (S k) Z
The :p command enters interactive proof mode, which can be used to complete the missing definitions.

xstheorems> :p plusredZ_Z

{holeO} : Z = plus Z Z

This gives us a list of premises (above the line; there are none here) and the current goal (below the line;
named {hole0} here). At the prompt we can enter tactics to direct the construction of the proof. In this
case, we can normalise the goal with the compute tactic:
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-plusredZ_Z> compute

{holeO} : Z = Z

Now we have to prove that z equals Z, which is easy to prove by Ref1. To apply a function, such as
Refl, we use refine which introduces subgoals for each of the function’s explicit arguments (Ref1
has none):

-plusredZ_Z> refine Refl
plusredZ_Z: no more goals

Here, we could also have used the trivial tactic, which tries to refine by Ref1, and if that fails, tries
to refine by each name in the local context. When a proof is complete, we use the ged tactic to add the
proof to the global context, and remove the metavariable from the unsolved metavariables list. This also
outputs a trace of the proof:

-plusredZ_Z> ged
plusredZ_Z = proof
compute
refine Refl

*theorems> :m
Global metavariables:
[plusredZ_S]

The :addproof command, at the interactive prompt, will add the proof to the source file (effectively in
an appendix). Let us now prove the other required lemma, plusredz_s:

*theorems> :p plusredZ_S
—————————————————————————————————— (plusredZ_S) ———————-
{holeO} : (k : Nat) -> (k = plus k Z2) -> S k = plus (S k) 2

In this case, the goal is a function type, using k (the argument accessible by pattern matching) and ih —
the local variable containing the result of the recursive call. We can introduce these as premisses using
the intro tactic twice (or int ros, which introduces all arguments as premisses). This gives:

k : Nat

{hole2} : S k = plus (S k) Z

Since plus is defined by recursion on its first argument, the term plus (S k) Z in the goal can be
simplified, so we use compute.

k : Nat

{hole2} : S k =S (plus k Z2)

We know, from the type of ih, thatk = plus k Z,so we would like to use this knowledge to replace
plus k Zin the goal with k. We can achieve this with the rewrite tactic:

-plusredZ_S> rewrite ih

{hole3} : S k = S k

-plusredZ_S>
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The rewrite tactic takes an equality proof as an argument, and tries to rewrite the goal using that proof.
Here, it results in an equality which is trivially provable:

-plusredZ_S> trivial
plusredZ_S: no more goals
-plusredZ_S> ged
plusredZ_S = proof {

intros;

rewrite ih;

trivial;

}

Again, we can add this proof to the end of our source file using the :addproof command at the
interactive prompt.

8.5 Totality Checking

If we really want to trust our proofs, it is important that they are defined by tofal functions — that is, a
function which is defined for all possible inputs and is guaranteed to terminate. Otherwise we could
construct an element of the empty type, from which we could prove anything:

-—- making use of 'hd' being partially defined
emptyl : Void
emptyl = hd [] where

hd : List a -> a

hd (x :: xs) = x

-—- not terminating
empty2 : Void
empty2 = empty2

Internally, IDRIS checks every definition for totality, and we can check at the prompt with the : total
command. We see that neither of the above definitions is total:

*theorems> :total emptyl
possibly not total due to: emptyl#hd
not total as there are missing cases
*theorems> :total empty2
possibly not total due to recursive path empty2

Note the use of the word “possibly” — a totality check can, of course, never be certain due to the
undecidability of the halting problem. The check is, therefore, conservative. It is also possible (and
indeed advisable, in the case of proofs) to mark functions as total so that it will be a compile time error
for the totality check to fail:

total empty2 : Void
empty2 = empty?2

Type checking ./theorems.idr
theorems.idr:25:empty2 is possibly not total due to recursive path
empty2

Reassuringly, our proof in Section 8.2 that the zero and successor constructors are disjoint is total:

*theorems> :total disjoint
Total

The totality check is, necessarily, conservative. To be recorded as total, a function £ must:

* Cover all possible inputs

36



® Be well-founded — i.e. by the time a sequence of (possibly mutually) recursive calls reaches £ again,
it must be possible to show that one of its arguments has decreased.

¢ Not use any data types which are not strictly positive

* Not call any non-total functions

8.5.1 Directives and Compiler Flags for Totality

By default, IDRIS allows all definitions, whether total or not. However, it is desirable for functions to be
total as far as possible, as this provides a guarantee that they provide a result for all possible inputs, in
finite time. It is possible to make total functions a requirement, either:

¢ By using the ——total compiler flag.

* By adding a $default total directive to a source file. All definitions after this will be required
to be total, unless explicitly flagged as partial.

All functions after a $default total declaration are required to be total. Correspondingly, after a
$default partial declaration, the requirement is relaxed.

Finally, the compiler flag ——warnpartial causes IDRIS to print a warning for any undeclared partial
function.

8.5.2 Totality checking issues

Please note that the totality checker is not perfect! Firstly, it is necessarily conservative due to the
undecidability of the halting problem, so many programs which are total will not be detected as such.
Secondly, the current implementation has had limited effort put into it so far, so there may still be cases
where it believes a function is total which is not. Do not rely on it for your proofs yet!

8.5.3 Hints for totality

In cases where you believe a program is total, but IDRIS does not agree, it is possible to give hints to the
checker to give more detail for a termination argument. The checker works by ensuring that all chains of
recursive calls eventually lead to one of the arguments decreasing towards a base case, but sometimes
this is hard to spot. For example, the following definition cannot be checked as total because the

checker cannot decide that filter (<= x) xs will alwaysbe smaller than (x :: xs):
gsort : Ord a => List a -> List a
gsort [] = T[]
gsort (x :: xs)
= gsort (filter (< x) xs) ++
(x :: gsort (filter (>= x) xs))

The function assert_smaller, defined in the Prelude, is intended to address this problem:

assert_smaller : a -> a -> a
assert_smaller x y =y

It simply evaluates to its second argument, but also asserts to the totality checker that y is structurally
smaller than x. This can be used to explain the reasoning for totality if the checker cannot work it out
itself. The above example can now be written as:

total
gsort : Ord a => List a -> List a
gsort [] = []
gsort (x :: Xxs)
= gsort (assert_smaller (x :: xs) (filter (< x) xs)) ++

(x :: gsort (assert_smaller (x :: xs) (filter (>= x) xs)))
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The expression assert_smaller (x :: xs) (filter (<= x) xs) asserts that the result of the
filter will always be smaller than the pattern (x :: xs).
In more extreme cases, the function assert_total marks a subexpression as always being total:

assert_total : a —-> a
assert_total x = x

In general, this function should be avoided, but it can be very useful when reasoning about primitives or
externally defined functions (for example from a C library) where totality can be shown by an external
argument.

9 Provisional Definitions

Sometimes when programming with dependent types, the type required by the type checker and the
type of the program we have written will be different (in that they do not have the same normal form),
but nevertheless provably equal. For example, recall the parity function:

data Parity : Nat -> Type where
Even : Parity (n + n)
O0dd : Parity (S (n + n))
parity : (n:Nat) -> Parity n

We’d like to implement this as follows:

parity : (n:Nat) -> Parity n

parity 2 = Even {n=Z7Z}

parity (S Z) = 0dd {n=Z}

parity (S (S k)) with (parity k)
parity (S (S (3 + 3))) | Even = Even {n=S j}
parity (S (S (S8 (3 + 3)))) | 0dd = 0dd {n=S jJj}

This simply states that zero is even, one is odd, and recursively, the parity of k+2 is the same as the parity
of k. Explicitly marking the value of n is even and odd is necessary to help type inference. Unfortunately,
the type checker rejects this:

viewsbroken.idr:12:10:When elaborating right hand side of ViewsBroken.
parity:
Can’t unify
Parity (plus (S J) (S 3))
with
Parity (S (S (plus j 3J)))

Specifically:
Can’t unify
plus (S j) (S 3J)
with
S (S (plus 3 J))
The type checker is telling us that (j+1)+ (j+1) and 2+7j+7 do not normalise to the same value. This is
because plus is defined by recursion on its first argument, and in the second value, there is a successor

symbol on the second argument, so this will not help with reduction. These values are obviously equal —
how can we rewrite the program to fix this problem?
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9.1 Provisional definitions

Provisional definitions help with this problem by allowing us to defer the proof details until a later point.
There are two main reasons why they are useful.

e When prototyping, it is useful to be able to test programs before finishing all the details of proofs.

e When reading a program, it is often much clearer to defer the proof details so that they do not
distract the reader from the underlying algorithm.

Provisional definitions are written in the same way as ordinary definitions, except that they introduce
the right hand side with a ?= rather than =. We define parity as follows:

parity : (n:Nat) -> Parity n

parity Z = Even {n=Z7Z}

parity (S Z) = 0dd {n=Z}

parity (S (S k)) with (parity k)
parity (S (S (3 + 3))) | Even ?= Even {n=S j}
parity (S (S (S (J + J)))) | 0dd 2= 0dd {n=S 3J}

When written in this form, instead of reporting a type error, IDRIS will insert a metavariable standing for
a theorem which will correct the type error. IDRIS tells us we have two proof obligations, with names
generated from the module and function names:

*views> :m
Global metavariables:
[Vviews.parity_lemma_2,views.parity_lemma_1]

The first of these has the following type:

*views> :p views.parity_ lemma_1

—————————————————————————————————— (views.parity_lemma_1l) —-——————-—

{holeO} : (j : Nat) -> (Parity (plus (S J) (S Jj))) —-> Parity (S (S (plus
j )

-views.parity_lemma_1>

The two arguments are j, the variable in scope from the pattern match, and value, which is the value
we gave in the right hand side of the provisional definition. Our goal is to rewrite the type so that we
can use this value. We can achieve this using the following theorem from the prelude:

plusSuccRightSucc : (left : Nat) -> (right : Nat) ->
S (left + right) = left + (S right)

We need to use compute again to unfold the definition of plus:

-views.parity_ lemma_1> compute

—————————————————————————————————— (views.parity_lemma_1l) —-——————-
{holeO} : (j : Nat) -> (Parity (S (plus J (S 3J)))) —> Parity (S (S (plus
3D
After applying intros we have:

-views.parity_lemma_1> intros



Then we apply the plusSuccRight Succ rewrite rule, symmetrically, to j and j, giving:

-views.parity_lemma_1> rewrite sym (plusSuccRightSucc j 3j)

{hole3} : Parity (S (plus j (S J)))
symis a function, defined in the library, which reverses the order of the rewrite:

sym : 1 =r —>r =1
sym Refl = Refl

We can complete this proof using the t rivial tactic, which finds value in the premises. The proof of
the second lemma proceeds in exactly the same way.

We can now test the nat ToBin function from Section 7.2 at the prompt. The number 42 is 101010 in
binary. The binary digits are reversed:

*views> show (natToBin 42)
"[False, True, False, True, False, True]" : String

9.2 Suspension of Disbelief

IDRIS requires that proofs be complete before compiling programs (although evaluation at the prompt
is possible without proof details). Sometimes, especially when prototyping, it is easier not to have to
do this. It might even be beneficial to test programs before attempting to prove things about them — if
testing finds an error, you know you had better not waste your time proving something!

Therefore, IDRIS provides a built-in coercion function, which allows you to use a value of the incorrect

types:

believe_me : a -> Db

Obviously, this should be used with extreme caution. It is useful when prototyping, and can also be
appropriate when asserting properties of external code (perhaps in an external C library). The “proof” of
views.parity_lemma_1 using this is:

views.parity_lemma_2 = proof {
intro;
intro;
exact believe_me value;

}

The exact tactic allows us to provide an exact value for the proof. In this case, we assert that the value
we gave was correct.

9.3 Example: Binary numbers

Previously, we implemented conversion to binary numbers using the Parity view. Here, we show how
to use the same view to implement a verified conversion to binary. We begin by indexing binary numbers
over their Nat equivalent. This is a common pattern, linking a representation (in this case Binary) with
a meaning (in this case Nat):

data Binary : Nat -> Type where
bEnd : Binary Z
bO : Binary n -> Binary (n + n)
bI : Binary n —-> Binary (S (n + n))
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b0 and b1 take a binary number as an argument and effectively shift it one bit left, adding either a zero
or one as the new least significant bit. The index, n + norS (n + n) states the result that this left
shift then add will have to the meaning of the number. This will result in a representation with the least
significant bit at the front.

Now a function which converts a Nat to binary will state, in the type, that the resulting binary number
is a faithful representation of the original Nat:

natToBin : (n:Nat) —-> Binary n

The Parity view makes the definition fairly simple — halving the number is effectively a right shift
after all — although we need to use a provisional definition in the odd case:

natToBin : (n:Nat) —-> Binary n

natToBin Z = bEnd

natToBin (S k) with (parity k)
natToBin (S (Jj + 7J)) | even = bI (natToBin j)
natToBin (S (S (j + 3))) | odd 2= bO (natToBin (S J))

The problem with the odd case is the same as in the definition of parity, and the proof proceeds in the
same way:

natToBin_lemma_1l = proof {
intro;
intro;
rewrite sym (plusSuccRightSucc j J);
trivial;

}

To finish, we’ll implement a main program which reads an integer from the user and outputs it in binary.

main : IO ()
main = do putStr "Enter a number: "
X <- getLine
print (natToBin (fromInteger (cast x)))

For this to work, of course, we need a Show instance for Binary n:

instance Show (Binary n) where

show (bO x) = show x ++ "QO"
show (bI x) = show x ++ "1"
show bEnd = ""

10 Interactive Editing

By now, we have seen several examples of how IDRIS” dependent type system can give extra confidence
in a function’s correctness by giving a more precise description of its intended behaviour in its type. We
have also seen an example of how the type system can help with EDSL development by allowing a
programmer to describe the type system of an object language. However, precise types give us more
than verification of programs — we can also exploit types to help write programs which are correct by
construction.

The IDRIS REPL provides several commands for inspecting and modifying parts of programs, based
on their types, such as case splitting on a pattern variable, inspecting the type of a metavariable, and
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even a basic proof search mechanism. In this section, we explain how these features can be exploited by
a text editor, and specifically how to do so in Vim*. An interactive mode for Emacs® is also available.

10.1 Editing at the REPL

The REPL provides a number of commands, which we will describe shortly, which generate new program
fragments based on the currently loaded module. These take the general form

:command [line number] [name]

That is, each command acts on a specific source line, at a specific name, and outputs a new program
fragment. Each command has an alternative form, which updates the source file in-place:

:command! [line number] [name]

When the REPL is loaded, it also starts a background process which accepts and responds to REPL
commands, using idris --client. For example, if we have a REPL running elsewhere, we can
execute commands such as:

$ idris —--client ’:t plus’
Prelude.Nat.plus : Nat -> Nat -> Nat
$ idris —--client ’2+27

4 : Integer

A text editor can take advantage of this, along with the editing commands, in order to provide interactive
editing support.

10.2 Editing Commands
10.2.1 :addclause

The :addclause n f command (abbreviated :ac n f) creates a template definition for the function
named f declared on line n. For example, if the code beginning on line 94 contains:

vzipWith : (a -> b -> ¢) -—>
Vect n a —> Vect n b —> Vect n c

then :ac 94 vzipWith will give:

vzipWith f xs ys = ?vzipWith_rhs

The names are chosen according to hints which may be given by a programmer, and then made unique
by the machine by adding a digit if necessary. Hints can be given as follows:

%$name Vect xs, ys, zs, Wws

This declares that any names generated for types in the Vect family should be chosen in the order xs,
VS, ZS, WS.

10.2.2 :casesplit

The :casesplit n x command, abbreviated :cs n x, splits the pattern variable x on line n into the
various pattern forms it may take, removing any cases which are impossible due to unification errors.
For example, if the code beginning on line 94 is:

*https://github.com/idris-hackers/idris-vim
Shttps://github.com/idris-hackers/idris—emacs
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vzipWith : (a -—> b -> ¢) —>
Vect n a —> Vect n b -> Vect n c
vzipWith f xs ys = ?vzipWith_rhs

then :cs 96 xs will give:

vzipWith £ [] ys = ?vzipWith_rhs_1
vzipWith f (x :: xs) ys = ?vzipWith_rhs_2
That is, the pattern variable xs has been split into the two possible cases [] and x :: xs. Again, the

names are chosen according to the same heuristic. If we update the file (using : cs!) then case split on
ys on the same line, we get:

vzipWith £ [] [] = ?vzipWith_rhs_3
That is, the pattern variable ys has been split into one case [], IDRIS having noticed that the other

possible case y :: ys would lead to a unification error.
10.2.3 :addmissing

The :addmissing n f command, abbreviated :am n £, adds the clauses which are required to make
the function £ on line n cover all inputs. For example, if the code beginning on line 94 is. ..

vzipWith : (a -=> b -> ¢) —->
Vect n a -> Vect n b —> Vect n c
vzipWith £ [] [] = ?vzipWith_rhs_1

then :am 96 vzipWith gives:

vzipWith £ (x :: xs) (y :: ys) = ?vzipWith_rhs_2

That is, it notices that there are no cases for non-empty vectors, generates the required clauses, and
eliminates the clauses which would lead to unification errors.

10.2.4 :proofsearch

The :proofsearch n fcommand, abbreviated :ps n £, attempts to find a value for the metavariable
f on line n by proof search, trying values of local variables, recursive calls and constructors of the
required family. Optionally, it can take a list of hints, which are functions it can try applying to solve the
metavariable. For example, if the code beginning on line 94 is:

vzipWith : (a -—> b -> ¢) —-—>

Vect n a —> Vect n b -> Vect n c
vzipWith £ [] [] = ?vzipWith_rhs_1
vzipWith £ (x :: xs) (y :: ys) = ?2vzipWith_rhs_2

then :ps 96 vzipWith_rhs_1 will give

[]

This works because it is searching for a Vect of length 0, of which the empty vector is the only pos-
sibiliy. Similarly, and perhaps surprisingly, there is only one possibility if we try to solve :ps 97
vzipWith_rhs_2:

f xvy :: (vzipWith f xs ys)

This works because vzipWith has a precise enough type: The resulting vector has to be non-empty (a
: 1); the first element must have type c and the only way to get this is to apply £ to x and y; finally, the
tail of the vector can only be built recursively.
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10.2.5 :makewith

The :makewith n f command, abbreviated :mw n f, addsawith to a pattern clause. For example,
recall parity. If line 10 is:

parity (S k) = ?parity_rhs

then :mw 10 parity will give:

parity (S k) with (_)
parity (S k) | with_pat = ?parity_rhs

If we then fill in the placeholder _withparity kandcasesplitonwith_patusing :cs 11 with_pat
we get the following patterns:

parity (S (plus n n)) | even = ?parity_rhs_1
parity (S (S (plus n n))) | odd = ?parity_rhs_2

Note that case splitting has normalised the patterns here (giving plus rather than +). In any case, we see
that using interactive editing significantly simplifies the implementation of dependent pattern matching
by showing a programmer exactly what the valid patterns are.

10.3 Interactive Editing in Vim

The editor mode for Vim provides syntax highlighting, indentation and interactive editing support using
the commands described above. Interactive editing is achieved using the following editor commands,
each of which update the buffer directly:

* \d adds a template definition for the name declared on the current line (using : addclause).

* \c case splits the variable at the cursor (using : casesplit).

\m adds the missing cases for the name at the cursor (using : addmissing).

\w adds a with clause (using :makewith).

* \o invokes a proof search to solve the metavariable under the cursor (using : proofsearch).

\p invokes a proof search with additional hints to solve the metavariable under the cursor (using
:proofsearch).

There are also commands to invoke the type checker and evaluator:

¢ \t displays the type of the (globally visible) name under the cursor. In the case of a metavariable,
this displays the context and the expected type.

* \e prompts for an expression to evaluate.

* \r reloads and type checks the bulffer.

Corresponding commands are also available in the Emacs mode. Support for other editors can be added
in a relatively straighforward manner by using idris -client.

11 Syntax Extensions
IDRIS supports the implementation of Embedded Domain Specific Languages (EDSLs) in several ways [4].
One way, as we have already seen, is through extending do notation. Another important way is to allow

extension of the core syntax. In this section we describe two ways of extending the syntax: syntax rules
and ds1 notation.
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11.1 syntax rules

We have seen if...then...else expressions, but these are not built in. Instead, we can define a
function in the prelude as follows (we have already seen this function in Section 3.7:

boolCase : (x:Bool) -> Lazy a —-> Lazy a —-> a;
boolCase True t e = t;
boolCase False t e = e;

and then extend the core syntax with a syntax declaration:

syntax "if" [test] "then" [t] "else" [e] = boolCase test t e;

The left hand side of a syntax declaration describes the syntax rule, and the right hand side describes
its expansion. The syntax rule itself consists of:

¢ Keywords — here, i f, then and else, which must be valid identifiers

¢ Non-terminals — included in square brackets, [test], [t] and [e] here, which stand for
arbitrary expressions. To avoid parsing ambiguities, these expressions cannot use syntax extensions
at the top level (though they can be used in parentheses).

¢ Names — included in braces, which stand for names which may be bound on the right hand side.

* Symbols — included in quotations marks, e.g. " :=". This can also be used to include reserved
words in syntax rules, such as "let" or "in".

The limitations on the form of a syntax rule are that it must include at least one symbol or keyword,
and there must be no repeated variables standing for non-terminals. Any expression can be used, but if
there are two non-terminals in a row in a rule, only simple expressions may be used (that is, variables,
constants, or bracketed expressions). Rules can use previously defined rules, but may not be recursive.
The following syntax extensions would therefore be valid:

syntax [var] ":=" [val] = Assign var val;
syntax [test] "?" [t] ":" [e] = if test then t else ¢;
syntax "select" [x] "from" [t] "where" [w] = SelectWhere x t wj
syntax "select" [x] "from" [t] = Select x t;

Syntax macros can be further restricted to apply only in patterns (i.e., only on the left hand side of a
pattern match clause) or only in terms (i.e. everywhere but the left hand side of a pattern match clause)
by being marked as pattern or term syntax rules. For example, we might define an interval as follows,
with a static check that the lower bound is below the upper bound using so:

data Interval : Type where
MkInterval : (lower : Float) -> (upper : Float) ->
so (lower < upper) —-> Interval

We can define a syntax which, in patterns, always matches oh for the proof argument, and in terms
requires a proof term to be provided:

pattern syntax "[" [x] "..." [y] "]" = MkInterval x y oh
term syntax "[" [x] "..." [y] "]I" = MkInterval x y ?bounds_lemma

In terms, the syntax [x. . .y] will generate a proof obligation bounds_1lemma (possibly renamed).
Finally, syntax rules may be used to introduce alternative binding forms. For example, a for loop
binds a variable on each iteration:
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syntax "for" {x} "in" [xs] ":" [body] = forLoop xs (\x => body)

main : IO ()
main = do for x in [1..10]:
putStrLn ("Number " ++ show x)
putStrLn "Done!"

Note that we have used the {x} form to state that x represents a bound variable, substituted on the right
hand side. We have also put "in" in quotation marks since it is already a reserved word.

11.2 dsl notation

The well-typed interpreter in Section 6 is a simple example of a common programming pattern with
dependent types. Namely: describe an object language and its type system with dependent types to
guarantee that only well-typed programs can be represented, then program using that representation.
Using this approach we can, for example, write programs for serialising binary data [1] or running
concurrent processes safely [2].

Unfortunately, the form of object language programs makes it rather hard to program this way in
practice. Recall the factorial program in Expr for example:

fact : Expr G (TyFun TyInt TyInt)

fact = Lam (If (Op (==) (Var Stop) (vVal 0))
(Val 1) (Op (*) (app fact (Op (=) (Var Stop) (val 1)))
(Var Stop)))

Since this is a particularly useful pattern, IDRIS provides syntax overloading [4] to make it easier to
program in such object languages:

dsl expr
lambda = Lam
variable = Var

index first = Stop
index_next Pop

A ds1 block describes how each syntactic construct is represented in an object language. Here, in the
expr language, any IDRIS lambda is translated to a Lam constructor; any variable is translated to the
Var constructor, using Pop and Stop to construct the de Bruijn index (i.e., to count how many bindings
since the variable itself was bound). It is also possible to overload let in this way. We can now write
fact as follows:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))
(val 1) (Op (%) (app fact (Op (=) x (Val 1))) x))

In this new version, expr declares that the next expression will be overloaded. We can take this further,
using idiom brackets, by declaring;:

(<$>) : | (f : Expr G (TyFun a t)) -> Expr G a —> Expr G t
(<$>) = \f, a => App f a

pure : Expr G a —> Expr G a
pure = id

Note that there is no need for these to be part of an instance of Applicative, since idiom bracket
notation translates directly to the names <$> and pure, and ad-hoc type-directed overloading is allowed.
We can now say:
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fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))
(Vval 1) (Op (*) [I fact (Op (=) x (val 1)) [1]1 x))

With some more ad-hoc overloading and type class instances, and a new syntax rule, we can even go as
far as:

syntax "IF" [x] "THEN" [t] "ELSE" [e] = If x t e
fact : Expr G (TyFun TyInt TyInt)

fact = expr (\x => IF x == 0 THEN 1 ELSE [| fact (x — 1) |] * x)

12 Miscellany

In this section we discuss a variety of additional features:

e auto, implicit, and default arguments; * type providers;
e literate programming; ® code generation; and
¢ interfacing with external libraries through the ¢ the universe hierarchy.

foreign function interface;

12.1 Auto implicit arguments

We have already seen implicit arguments, which allows arguments to be omitted when they can be
inferred by the type checker, e.g.

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

In other situations, it may be possible to infer arguments not by type checking but by searching the
context for an appropriate value, or constructing a proof. For example, the following definition of head
which requires a proof that the list is non-empty:

isCons : List a —> Bool

isCons [] = False

isCons (x :: xs) = True

head : (xs : List a) -> (isCons xs = True) -> a
head (x :: xs) _ = X

If the list is statically known to be non-empty, either because its value is known or because a proof
already exists in the context, the proof can be constructed automatically. Auto implicit arguments allow
this to happen silently. We define head as follows:

head : (xs : List a) -> {auto p : isCons xs = True} —-> a
head (x :: xs) = x

The auto annotation on the implicit argument means that IDRIS will attempt to fill in the implicit
argument using the trivial tactic, which searches through the context for a proof, and tries to solve
with ref1 if a proof is not found. Now when head is applied, the proof can be omitted. In the case that
a proof is not found, it can be provided explicitly as normal:

head xs {p = ?headProof}
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More generally, we can fill in implicit arguments with a default value by annotating them with default.
The definition above is equivalent to:

head : (xs : List a) —>
{default proof { trivial; } p : isCons xs = True} -> a
head (x :: xs) = x

12.2 Implicit conversions

IDRIS supports the creation of implicit conversions, which allow automatic conversion of values from one
type to another when required to make a term type correct. This is intended to increase convenience and
reduce verbosity. A contrived but simple example is the following:

implicit intString : Int —-> String
intString = show

test : Int -> String
test x = "Number " ++ x

In general, we cannot append an Int to a String, but the implicit conversion function intString can
convert x to a String, so the definition of test is type correct. An implicit conversion is implemented
just like any other function, but given the implicit modifier, and restricted to one explicit argument.

Only one implicit conversion will be applied at a time. That is, implicit conversions cannot be chained.
Implicit conversions of simple types, as above, are however discouraged! More commonly, an implicit
conversion would be used to reduce verbosity in an embedded domain specific language, or to hide
details of a proof. Such examples are beyond the scope of this tutorial.

12.3 Literate programming

Like Haskell, IDRIS supports literate programming. If a file has an extension of . 1idr then it is assumed
to be a literate file. In literate programs, everything is assumed to be a comment unless the line begins
with a greater than sign >, for example:

> module literate
This is a comment. The main program is below
> main : IO ()

> main = putStrLn "Hello literate world!\n"

An additional restriction is that there must be a blank line between a program line (beginning with >)
and a comment line (beginning with any other character).

12.4 Foreign function calls

For practical programming, it is often necessary to be able to use external libraries, particularly for
interfacing with the operating system, file system, networking, et cetera. IDRIS provides a lightweight
foreign function interface for achieving this, as part of the prelude. For this, we assume a certain amount
of knowledge of C and the gcc compiler. First, we define a datatype which describes the external types
we can handle:

data FTy = FInt | FFloat | FChar | FString | FPtr | FUnit

Each of these corresponds directly to a C type. Respectively: int, double, char, charx, voidx and
void. There is also a translation to a concrete IDRIS type, described by the following function:
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interpFTy : FTy —-> Type
interpFTy FInt = Int
interpFTy FFloat Float
interpFTy FChar Char
interpFTy FString = String
interpFTy FPtr Ptr
interpFTy FUnit ()

A foreign function is described by a list of input types and a return type, which can then be converted to
an IDRIS type:

ForeignTy : (xs:List FTy) -> (t:FTy) -> Type
A foreign function is assumed to be impure, so ForeignTy builds an I0 type, for example:

Idris> ForeignTy [FInt, FString] FString
Int —> String -> IO String : Type

Idris> ForeignTy [FInt, FString] FUnit
Int —-> String -> IO () : Type

We build a call to a foreign function by giving the name of the function, a list of argument types and the
return type. The built in construct mkForeign converts this description to a function callable by IDRIS:

data Foreign : Type —-> Type where
FFun : String -> (xs:List FTy) -> (t:FTy) ->
Foreign (ForeignTy xs t)

mkForeign : Foreign x -> x

Note that the compiler expects mkForeign to be fully applied to build a complete foreign function call.
For example, the put St r function is implemented as follows, as a call to an external function putStr
defined in the run-time system:

putStr : String -> IO ()
putStr x = mkForeign (FFun "putStr" [FString] FUnit) x

Include and linker directives

Foreign function calls are translated directly to calls to C functions, with appropriate conversion between
the IDRIS representation of a value and the C representation. Often this will require extra libraries to be
linked in, or extra header and object files. This is made possible through the following directives:

® 21ib target "x" — include the 1ibx library. If the target is C this is equivalent to passing the
-1x option to gcc. If the target is Java the library will be interpreted as a groupId:artifactId-
:packaging:version dependency coordinate for maven.

* %include target "x" — use the header file or import x for the given back end target.
® $link target "x.o" — link with the object file x . o when using the given back end target.
® %dynamic "x.so" — dynamically link the interpreter with the shared object % . so.

Testing foreign function calls

Normally, the Idris interpreter (used for typechecking and at the REPL) will not perform IO actions.
Additionally, as it neither generates C code nor compiles to machine code, the $1ib, $include and
$1ink directives have no effect. IO actions and FFI calls can be tested using the special REPL command
:x EXPR, and C libraries can be dynamically loaded in the interpreter by using the : dynamic command
or the $dynamic directive. For example:
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Idris> :dynamic libm.so
Idris> :x unsafePerformIO ((mkForeign (FFun "sin" [FFloat] FFloat)) 1.6)
0.9995736030415051 : Float

12.5 Type Providers

Idris type providers, inspired by F#'s type providers, are a means of making our types be “about”
something in the world outside of Idris. For example, given a type that represents a database schema
and a query that is checked against it, a type provider could read the schema of a real database during
type checking.

Idris type providers use the ordinary execution semantics of Idris to run an IO action and extract the
result. This result is then saved as a constant in the compiled code. It can be a type, in which case it is
used like any other type, or it can be a value, in which case it can be used as any other value, including
as an index in types.

Type providers are still an experimental extension. To enable the extension, use the $language
directive:

%$language TypeProviders

A provider p for some type t is simply an expression of type I0 (Provider t).The $provide
directive causes the type checker to execute the action and bind the result to a name. This is perhaps best
illustrated with a simple example. The type provider fromFile reads a text file. If the file consists of
the string "Int", then the type Int will be provided. Otherwise, it will provide the type Nat.

strToType : String —-> Type
strToType "Int" = Int
strToType _ = Nat

fromFile : String -> IO (Provider Type)
fromFile fname = do str <- readFile fname
return (Provide (strToType (trim str)))

We then use the $provide directive:

$provide (Tl : Type) with fromFile "theType"

foo : T1
foo = 2

If the file named theType consists of the word Int, then foo will be an Int. Otherwise, it will be a Nat.
When Idris encounters the directive, it first checks that the provider expression fromFile "theType"
has type I0 (Provider Type). Next, it executes the provider. If the resultis Provide t,then T1 is
defined as t. Otherwise, the result is an error.

Our datatype Provider t has the following definition:

data Provider a = Error String
| Provide a

We have already seen the Provide constructor. The Error constructor allows type providers to return
useful error messages. The example in this section was purposefully simple. More complex type provider
implementations, including a statically-checked SQLite binding, are available in an external collection®.

bhttps://github.com/david-christiansen/idris—type-providers
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12.6 C Target

The default target of IDRIS is C. Compiling via :
$ idris hello.idr -o hello
is equivalent to :
$ idris --codegen C hello.idr -o hello

When the command above is used, a temporary C source is generated, which is then compiled into an
executable named hello.
In order to view the generated C code, compile via :

$ idris hello.idr -S -o hello.c

To turn optimisations on, use the $flag C pragma within the code, as is shown below :

module Main
$flag C "-03"

factorial : Int -> Int
factorial 0 =1
factorial n = n * (factorial (n-1))

main : IO ()
main = do
putStrln $ show $ factorial 3

12.7 JavaScript Target

IDRIS is capable of producing JavaScript code that can be run in a browser as well as in the Node]S
environment or alike. One can use the FFI to communicate with the JavaScript ecosystem.

Code Generation

Code generation is split into two separate targets. To generate code that is tailored for running in the
browser issue the following command:

$ idris --codegen javascript hello.idr -o hello.js

The resulting file can be embedded into your HTML just like any other JavaScript code.
Generating code for Node]S is slightly different. IDRIS outputs a JavaScript file that can be directly
executed via node.

$ idris --codegen node hello.idr -o hello
$ ./hello
Hello world

Take into consideration that the JavaScript code generator is using console. log to write text to st dout,
this means that it will automatically add a newline to the end of each string. This behaviour does not
show up in the NodeJS code generator.

Using the FFI

To write a useful application we need to communicate with the outside world. Maybe we want to
manipulate the DOM or send an Ajax request. For this task we can use the FFI. Since most JavaScript
APIs demand callbacks we need to extend the FFI so we can pass functions as arguments.

The JavaScript FF1 works a little bit differently than the regular FFI. It uses positional arguments to
directly insert our arguments into a piece of JavaScript code.

One could use the primitive addition of JavaScript like so:
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module Main

primPlus : Int -> Int -> IO Int
primPlus a b = mkForeign (FFun "%0 + %1" [FInt, FInt] FInt) a b

main : IO ()

main = do
a <- primPlus 1 1
b <- primPlus 1 2
print (a, Db)

Notice that the $n notation qualifies the position of the n-th argument given to our foreign function
starting from 0. When you need a percent sign rather than a position simply use %% instead.

Passing functions to a foreign function is very similar. Let’s assume that we want to call the following
function from the JavaScript world:

function twice (f, x) {
return f(f(x));

}

We obviously need to pass a function f here (we can infer it from the way we use f in twice, it would
be more obvious if JavaScript had types).

The JavaScript FFI is able to understand functions as arguments when you give it something of type
FFunction. The following example code calls twice in JavaScript and returns the result to our IDRIS
program:

module Main

twice : (Int -> Int) —-> Int -> IO Int
twice £ x = mkForeign (
FFun "twice(%0,%1)" [FFunction FInt FInt, FInt] FInt
) £ x
main : IO ()
main = do
a <- twice (+1) 1
print a

The program outputs 3, just like we expected.

Including external JavaScript files

Whenever one is working with JavaScript one might want to include external libraries or just some
functions that she or he wants to call via FFI which are stored in external files. The JavaScript and
Node]S code generators understand the $include directive. Keep in mind that JavaScript and Node]S
are handled as different code generators, therefore you will have to state which one you want to target.
This means that you can include different files for JavaScript and Node]S in the same IDRIS source file.
So whenever you want to add an external JavaScript file you can do this like so:

For Node]S:

%$include Node "path/to/external. js"

And for use in the browser:

$include JavaScript "path/to/external. js"

The given files will be added to the top of the generated code.
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Including Node]S modules

The Node]S code generator can also include modules with the $11ib directive.

$1ib Node "fs"

This directive compiles into the following JavaScript

var fs = require("fs");

Shrinking down generated JavaScript

IDRIS can produce very big chunks of JavaScript code. However, the generated code can be minified using
the closure-compiler from Google. Any other minifier is also suitable but closure-compiler
offers advanced compilation that does some aggressive inlining and code elimination. IDRIS can take full
advantage of this compilation mode and it’s highly recommended to use it when shipping a JavaScript
application written in IDRIS.

12.8 Cumulativity

Since values can appear in types and vice versa, it is natural that types themselves have types. For
example:

*universe> :t Nat

Nat : Type

*universe> :t Vect

Vect : Nat —-> Type —> Type

But what about the type of Type? If we ask IDRIS it reports

*universe> :t Type

Type : Type 1
If Type were its own type, it would lead to an inconsistency due to Girard’s paradox [5], so internally
there is a hierarchy of types (or universes):

Type : Type 1 : Type 2 : Type 3

Universes are cumulative, that is, if x : Type n we can also have that x : Type m, aslongasn
< m. The typechecker generates such universe constraints and reports an error if any inconsistencies
are found. Ordinarily, a programmer does not need to worry about this, but it does prevent (contrived)
programs such as the following:

myid : (a : Type) -> a -> a
myid _ x = x
idid : (a : Type) -> a —> a

idid = myid _ myid

The application of myid to itself leads to a cycle in the universe hierarchy — myid’s first argument is a
Type, which cannot be at a lower level than required if it is applied to itself.

13 Further Reading

Further information about IDRIS programming, and programming with dependent types in general, can
be obtained from various sources:
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The IDRIS web site (http://idris-1lang.org/) and by asking questions on the mailing list.
The IRC channel #idris, on chat.freenode.net.

The wiki (https://github.com/idris—lang/Idris-dev/wiki/)has further user provided
information, in particular:

— https://github.com/idris-lang/Idris—-dev/wiki/Manual
— https://github.com/idris-lang/Idris-dev/wiki/Language-Features

Examining the prelude and exploring the samples in the distribution. The IDRIS source can be
found online at: https://github.com/idris—lang/Idris-dev.

Existing projects on the Idris Hackers web space: http://idris-hackers.github.io.

Various papers (e.g. [1, 3, 4]). Although these mostly describe older versions of IDRIS.
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